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summary 

A general analysis of the stability properties of photochemical mecha- 
nisms for photogalvanic cells is presented. We consider a model, recently 
introduced, for photoredox systems in which a one-electron redox couple 
(here an inorganic couple) reacts with a two-electron redox couple (here an 
organic dye). We consider first the case of a well-stirred cell. A linear stabil- 
ity analysis and then a thermodynamic stability analysis are carried out for 
each of six possible mechanisms allowed by the model; similar analyses are 
performed to determine the stability at certain coordinates of the kinetic 
“phase diagram” where two (or more) mechanisms may compete. Taken 
together, the results of these analyses indicate that the photostationary 
state is asymptotically stable in all the kinetic regimes investigated. We next 
study how these conclusions are changed when diffusion of the reactants is 
taken into account explicitly. The general analysis is then specialized to treat 
a particular well-known photogalvanic cell, the iron-thionine system. The 
identity and the stability of the photostationary state for this system are 
investigated and are then quantified as functions of the concentration of the 
metal ion Fe’+ and the system illumination. Our results on this specific 
photogalvanic system are examined in the light of known results on the sta- 
bility properties of coupled chemical networks and are correlated with a 
recent study of the optimum efficiency of photogalvanic cells for solar 
energy conversion. 

1. Introduction 

Recently Albery et aI_ [I] have presented a study of the possible mech- 
anisms for a.certain class of photoredox systems in which a one-electron 
redox couple reacts with a two-electron redox couple. The system chosen for 
study was designed to model a common type of photogalvanic cell which 
employs an organic dye redox couple (such as thionine) and an inorganic 
redox couple (such as Fe(H), Fe(II1)). The organic redox couple involves two 
electrons and the chemical problem is formulated as a two-step process: 
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A+e 2 B (la) 

B+e 2 C Ub) 

where protonation is ignored; if the species A is thionine, then B is the semi- 
thionine radical and C is (doubly-reduced) leucothionine. If Fe(H) is desig- 
nated as Z and Fe( III) as Y, the inorganic couple is written as 

Y+e 2 Z (2) 

Experimentally it is found that in the absence of illumination the equilib- 
rium between the two couples is very much in favor of thionine (A) and 
Fe2+ (Z), whereas under illumination a new photostationary state is estab- 
lished with significant production of leucothionine (C) and Fe3+ (Y): 

A+22 E C+2Y (3) 

The products C and Y then react on the electrodes in a photogalvanic cell to 
produce power. Albery et al. [l] demonstrate that there are six possible 
mechanisms by which the system described by eqns. (1) - (3) can react, with 
the mechanism actually realized being dependent on the concentrations of 
the individual species, the rate constants and the n-radiance of the light. They 
present a mechanistic “phase diagram” wherein the interrelationship of the 
six possible mechanisms is clearly displayed and they comment on the gen- 
eral implications of their study for photogalvanic cells. In a subsequent con- 
tribution Albery et al. [2] go on to show how the analysis presented in ref. 
1 allows the actual mechanism of the iron-thionine photoredox system to 
be determined. Depending on the experimental conditions they find that 
this one-electron-two-electron system can react by two of the six possible 
mechanisms identified in ref. 1, With these results they are able to comment 
on the optimal conditions for the conversion of solar energy into electrical 
energy for the iron-thionine system. 

The purpose of the present study is to address the important question 
of dynamic stability of the general photoredox scheme described by eqns. 
(1) - (3), both in the regime where one mechanism dominates and at those 
coordinates of the mechanistic “phase diagram” where two (or more) of the 
six possible mechanisms may play a role. We shall consider first the case 
where the reactants in the cell may be assumed to be “well stirred” and then 
take up the more realistic case where diffusion of the reactants is taken into 
account explicitly. 

Following the notation of ref. 1 we consider the thermal reactions 

kl 
A+Z - 

r 
B+Y (4) 

k2 
B+Z 1 C+Y (5) 

k-2 



ka 
B+B = A+C 

h 
and assign a flu g to the photochemical reirction 
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(6) 

A+Z 5 B+Y 

where 

g = @&[A] = 3 [A] (31 

Here, for monochromatic radiation @n is the quantum efficiency for the 
production of B from A and Z, I is the irradiance of the monochromatic 
light and e is the molar extinction coefficient of A; in this study we ball 
regard the product #,1e = 3 to be a constant, although such a restriction 
csn be removed easily if warranted experimentally. For a photogalvanic 
system, closed with respect to mass transport, the problem defined by eqns. 
(4) - (7) has the following kinetic description: 

a I-AI 
-=DAv2[A] --g+ k-l [B][Y] +k3[B12 -k_,[A][C] 
at 

a PI 
-=Dgv2[B] +g-k._l[B][Y] -k2[B][Z] +k_l[C][Y] - 
at 

- 2ks[B]’ + 2kvs [A] [C] 

a]Ci 
-=DDcV2[C] + k,[B] [Z] - k_2[C] [Y] + ks[B12 - 

at 

---a[Al [Cl 

awl -=‘zv2[Zl -g+k-,[Bl[Yl -k,[Bl[Zl + k-,CCI[Yl 
at 

- 

(9) 

(10) 

(11) 

(12) 

(13) 

It is evident that eqns. (9) - (13) are coupled and are non-linear; in analyzing 
these equations it will be assumed that the system is isothermal and that no 
further non-linearities are brought into the problem through the rates k, and 
k --i; this important point will be discussed in the concluding section. 

In the following section we present the results of a linear stability 
analysis for the system described by eqns. (9) - (13) in the case where the 
diffusion terms are suppressed (the well-stirred case) for each of the six pos- 
sible kinetic regimes identified in ref. 1. A representative calculation is 
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carried through in detail for two of the possibilities and the final results for 
the remaining cases are noted. The behavior of the system at a mechanistic 
“phase boundary” is also considered in Section 2, a representative calcula- 
tion is presented and our results are summarized. The section concludes with 
a (Glansdorff-Prigogine) thermodynamic stability analysis of the well-stirred 
case and the results obtained are shown to complement those found via the 
linear stability analysis. In Section 3 we consider the role of reactant dif- 
fusion in influencing the predictions of the stability analyses presented in 
Section 2. Then in Section 4 we apply both linear stability analysis and ther- 
modynamic stability analysis to the specific photogalvanic system studied 
by Albery et al. [2 3, i.e. the iron-thionine system. The implications of our 
analysis in assessing the stability of photogalvanic systems involving an 
organic dye redox couple and an inorganic redox couple are discussed in the 
concluding section. 

2. Stability analysis of a well-stirred photogalvanic cell 

2.1. Linkar stability analysis 
We consider first the case where the cell is closed with respect to mass 

transport and all effects due to diffusional flows of reactants are suppressed. 
Given these two constraints on the mass flux the following conservation con- 
ditions can be verified easily: 

[A]+[B]+[C]=[A]i+[B]i+[C],=c (14) 

[Y] + [Z] = [Y]i+ [Z],= b (15) 

[Z] + [C] -[A] =[Z]i+ [C]i--[A],sd (161 

where the subscript i denotes the initial concentration of the particular 
species and where (a, b, d} are constants. Hence the overall reaction-dif- 
fusion system collapses to the following pair of dynamic equations: 

d[Al 
-----=-~(A] +k_l[B][Y] +k3[B12 -k_s[A](C] 

dt 
(17a) 

=--_[A] +k_,(a- [Al -Icl)(b---_-Al +CCl)+ 

+ k3(a - [Al - [Cl I2 - k-3IAl [Cl (17b) 

and 

Sp (17c) 

dlC1 
- = k2CBl [Zl 

dt 
---2LCl CYI f k3P312 ---3CAl [Cl WW 

= k2(a - [A] -[C])(d+[A] -[Cc])-k2[C](b----_A] + 



ZQ WC) 
The general problem of characterizing the stability of a nonequilibrium 

state, relative to some reference state, by determining and then classifying 
the singular points of the differential equations defining the system under 
study has been discussed in detail in a number of recent articles and mono- 
graphs (see for example ref. 3). For that reason we do not review here the 
background of the method, but simply remark that the stability of a given 
photostationary state in the present problem can be determined by com- 
puting the eigenvalues of the characteristic equation associated with the 
linear system : 

d’;t[A1) = PA{& [A] ) + Pc(S [C] ) 

d’;;C1 ) = QA@ [Al ) + Qc@ [cl 1 

Wa) 

WW 

Here the subscripts on P and Q denote differentiation with respect to the 
variables [A] and [C] . Specifically, we must solve the algebraic equation 

s2 - (PA + Qcb + (PAQc - pcQ~[Al) = 0 (20) 
where 

PA =-3 -k_l(b-d--_A] + [Cl)-k-&-[A] -[C])- 

- 2ks (a - [A] - [Cl 1 -k--8 [Cl @la) 

PC =-k_l(b-d-[A] +[C])+k_&-[A]-[C])- 

- 2k& - [A] - [C]) - k_,[A] (21b) 

QA = k,(a - [A] - [C] ) - k2(d + [A] - [C] ) + k_2[C] - 

- 2k& - [A] - [Cl) - k_,[C] (2lc) 

Qc =-k2(a-[A]-[Cl)--&+[A]-[Cl)- 

-k-2(b-d- [Al + [Cl 1 -k--2 Ccl - %(a - IA1 - ICI I- 

- k-a IA1 @W 
and where the derivatives are evaluated using the steady state values { [A] ,,, 
[B] e, [C] e) of the several concentration variables appearing in eqns. (21). 
In order to avoid too cumbersome a notation, in this section we shall drop 
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the subscripts on the values {[A] e, [B] e, [C] &and use unsubscripted vari- 
ables to denote the reference state concentrations. Depending on whether 
the eigenvalues s = s 1, s2 so determined are real or complex, positive or 
negative, different conclusions regarding the stability of a given photo- 
stationary state are possible. To investigate the stability of the possible 
photostationary states that can arise in the system eqns. (1) - (3) (in effect, 
to study the dynamical stability of systems governed by one of the six 
mechanisms identified by Albery et al. [l] ), we use the conservation condi- 
tions eqns. (14) - (16) to recast eqns. (21) in terms of the organic dye vari- 
ables {[A], [B] , [C]) and the metal ion concentrations {[Y] , [Z]}, and we 
then write 

P, =-gU - k-d[Y] + PI ) - 2k3 PI - k-3 [cl GW 

PC =-k_,({Y] - PI I- %Pl -k-a [Al (22bI 

QA = k2([B] - [Z]) + k-z[Cl -2kdBl -k-dC1 WW 

Qc =-k2([B] + [Z])-k-2([Y] + [Cl)-2k,[B] -k-3[Al (23b) 

From the theory of quadratic equations we have at once that 

s1 +s2 =PA +Qc 

=-g -k-l[Y] -4ks[B] -k-a[C] -k-l[B] - 

-k,[Z] -k-,[Y] -k-,[A] -k2[B] -k_,[CJ (2 44 
and 

S1S2 =P,Q, --c&/i 

I (-E - k_ I [Y] - 2k3 [B] - k--3[C] - kB1[B]) X 

X (--k,[Z] -k_,[Y] -2k3[B] -k_,[A] -k2[B] -k-2[C])- 

- (- k_JY] - 2ks[B] - k+[A] + k_l[B]) X 

X (-k2[Z] + k_2[C] -2k3[B] -k_3[C] + kz[B]) Wb) 

Given that the various factors (concentrations and rate constants) appearing 
in eqns. (24) are inherently positive quantities and since s1 + s2 < 0, it is 
clear that either we must have two real roots, one or both of which may be 
negative (depending on the sign of the product s1s2), or s1 and s2 are com- 
plex conjugates. If both Resi < 0 (i = 1 or 2), the associated photostationary 
state is asymptotically stable. If, however, sls2 < 0, then one eigenvalue will 
be negative and the other will be positive; Re Sj > 0 (i = 1 or 2) implies that 
the associated photostationary state will he unstable (say to perturbations or 
fluctuations). 
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The question formulated in Section 1 can now be posed clearly. For 
each of the six possible mechanisms identified by Albery et al. [l] in their 
general treatment of photochemical mechanisms for photogalvanic cells, we 
determine which (if any) of these mechanisms results in a photostationary 
state which is asymptotically stable. As promised in Section 1, we shall carry 
through the analysis explicitly for two representative mechanisms and shall 
simply record the results for the remaining mechanisms, Following this, we 
shall take up the important question of stability/instability at a mechanistic 
‘*phase boundary”. Before proceeding, however, we note that for a system 
closed with respect to mass transport (the present section) only one set of 
steady state concentrations is consistent with the dual constraints that the 
individual concentrations must be positive and that their composite sum 
must be bounded from above by the value a. 

The six possible mechanisms identified in ref. 1 emerge on examining 
the structure of the general steady state condition and are defined by certain 
inequalities relating concentrations and rate constants. These inequalities are 

k-1 WI WI > 
k-&sP12CW 

k-a[Yl + bdA1 
(25) 

WZI > ksP1 (26) 

k-,lYl > k-d4 (271 
The condition eqn. (25) is referred to in ref. 1 as Al, eqn. (26) is Bl and 
eqn. (27) is Cl, with the reverse of these inequalities being designated as A2, 
B2 and C2 respectively. The overall mechanism is a combination of one of 
each of the pairs Al or A2, Bl or B2 and Cl or C2. Of the eight possible 
combinations, only six are self-consistent and these are Al Bl Cl, Al B2 Cl, 
Al B2 C2, A2 Bl Cl, A2 B2 Cl and A2 B2 C2. Having identified these pos- 
sibilities Albery et al. [2] show that two of the mechanisms, Al B2 Cl and 
A2 B2 Cl, may be realized in the iron-thionine system (depending on the 
experimental conditions) with the optimum production of leucothionine 
being achieved in the regime where the mechanism A2 B2 Cl pertains. Ac- 
cordingly we choose these mechanisms to illustrate the details of the stabil- 
ity analysis. 

The basic task is to determine the algebraic sign of the product s1s2. 
Among the terms generated on expanding the products in eqn. (24b), only 
four negative terms are found, i.e. k_,[B]k,[B], k_l[B]k_2[C], 
k-,[Y]k_a[C] andk_a[A]ka[Z];ourprogramthenistoassesstheimpor- 
tance of these negative terms relative to the positive terms. To proceed we 
may first of all take advantage of the fact that in most photogalvanic cells 
the concentrations of the inorganic couple Y,Z are much larger than the con- 
centrations of the organic dye (see the discussion in ref. 1). Accordingly we 
group certain negative terms generated in the expansion of eqn. (24b) 
(k- 1 [B] k2 [ B] and k_ 1 [B] k_ 2 [C] ) with positive terms (respectively 
k2[B]k_ml[Y] and k- 1 LB] k_ 2 [Y] ) in such a way that the overall contribu- 
tion to s1s2 is positive, i.e. we notice 
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k2H31~-1[Yl --k-l[Blb[Bl =haCBlk-,([Yl -IBl)> 0 (28) 
and 

k-dBlk-z[Yl -k_,[B]k_,[C] =k _1[B]k-2([Y] -[C])> 0 (29) 

Again the inequalities hold since experimentally [Y] ) [B] , [Cl. Also, the 
experimental conditions are such [ 1 ] that 

so in eqn. (24b) we are guaranteed 

2k3km2[B] [YJ -kzk_3[A] [Z] > 0 (39) 

So, what it comes down to is that, of the four possible negative terms in the 
expression for slsz, three of these (k_,[B]k,[B], k_-1[B]k_-2[C] and 
k3 [A] kz [Z] ) can be coupled with positive terms in such a way that the over- 
all contribution to the product slsz is positive. To establish conclusively the 
sign of sls2, it is only necessary to assess the importance of the single re- 
maining negative term k- 1 [Y] k_ 3 [C] in each of the possible mechanisms. 
For definiteness let us consider the mechanism Al B2 Cl; using the cons- 
traints implied in the specification Al, B2, Cl (see the discussion immedi- 
ately following eqns. (25) - (27)), the rate equations at the steady state may 
be simplified to read 

d[Al 
-=-&?[A] +k_,[B][Y] =0 

dt 

d[Cl 
-=-k-z[C][Y] +kS[B12 =0 

dt 

From the first of these equations we have 

g”MBl =k-l[Yl 
k3 PI 2 

[Al 
and from the second equation we have 

k,[Bl 2 = k-z[Cl WI 
Now, from the condition Cl 

k-2Vl > k--,[A1 

we have 

Zk,[Bl = k-,[Yl 
k3 PI 2 k-2lCl WI 

EAI 
= k_,[Y] 

[Al 

> k_l[Y]z k-s[Al = k-l[Y]kss[C] 



213 

Hence the final couple the sign of which must be determined to specify the 
overall sign of the product s1s2 is 

Ikg[Bl --k-dYlk-dC1 > 0 (31) 

This last result completes the specification of e1s2. We are guaranteed that 
s1s2 is positive for the mechanism Al B2 Cl. In turn, this means that the 
two eigenvalues s1 and s2 are negative, i.e. that the photostationary state 
realized when the mechanism Al B2 Cl is operative is an asymptotically 
stable nonequilibrium steady state. 

As a second example let us consider the mechanism A2 B2 Cl. Using 
the constraints specified by the inequalities Bl and Cl, the rate equation for 
the component C at the steady state is simplified to 

d[Cl 
-=k8[B12 
dt 

-k_2[Cj[Y] =o 

from which we determine 

MB12 = k-zCC1 PI 
According to the condition Cl 

k-21Yl > k-d4 
we have 

ks[B12 = k--2El [Yl > k-JAI ICI 
Also, from the conditions A2 and Cl we have 

k-1 WI WI < 
~-API 2 EYI 

k-zW1 + k-dA1 

Now, using these two inequalities the rate equation for component A at the 
steady state is simplified to 

dM1 
-=--~[A] +k,[B12 =O 
dt 

so that 

g”’ k8 PI 2 k-2Wl CYI 

[Al = [Al 

Again, considering the condition Cl, we may specify 

p k-a ICI PI 

[Al 
> k-dC1 

So finally, using the condition AZ, i.e. 

k-2CBl > k-l[Yl 
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we are guaranteed 

Zk_s[B] - k_3[C]k_,[Y] >0 (32) 

and we have proved that the product sls2 is positive. That is, once again the 
eigenvalues s1 and s2 are negative and the photostationary state is asymptot- 
ically stable. In fact, analyses exactly similar to those performed for the 
mechanisms Al B2 Cl and A2 B2 Cl show that the photostationary state 
realized for each of the six possible mechanisms is asymptotically stable. 

To conclude this subsection we consider the stability of the photosta- 
tionary state at coordinates of the mechanistic “phase diagram” which con- 
stitute “phase boundaries” between mechanisms. Once again we illustrate 
the method using a single example and we simply state the final results for 
the other possibilities. As our single example we recall again the result of 
ref. 2 that, depending on whether kw2 or k_l(k_2[Y] /k3[C])f’2 is domi- 
nant, the mechanism for the iron-thionine system will be either A2 B2 Cl 
or Al 82 Cl respectively. The sense of the constraints B2 and Cl is as before 
(see the discussion following eqns. (25) - (27)); accordingly, using the in- 
equalities B2 and Cl the rate equation for component C at the steady state 
simplifies to 

dlcl 
-= k3[BJ2 - 

dt 
k_2[C] [Y] = 0 

so that 

ks[B]* = k-z[Cl PI 

and from the condition Cl we have 

k-2CCl WI > k-dA1 [Cl 
Now, according to the constraint Al = A2 and the condition Cl, we have 

k-r W = kzi Pl 
Thus 

k-1 PI WI = k3 PI 2 = k-z[Cl PI > ~--,[A1 ICI 
With these results the rate equation for component A at the steady state may 
be written as 

d[Al 
-=-~[A] +2k3[B12 =0 

dt 

so that 

g” 2WB12 = 2k- 2[Cl PI 

[Al CA1 
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Using the condition Cl we find 

k-2[Yl_ > k_ 

IAl 
2 

so that 

p 2k-2Wl WI 
[Al 

> 2k-,[C] 

ThUS 

iMa[Bl > =-,lClk--dYJ 
and once again 

&VQJBI --k-,[Clk-,lYl > 0 (33) 

which guarantees that the product s1s2 is positive. As noted earlier, we may 
then conclude that s1 and s2 are negative thereby guaranteeing the asymptot- 
ic stability of the associated photostationary state. In fact, exactly this con- 
clusion is obtained at all the mechanistic “phase boundaries” except those 
for which Bl = I32 and Cl = C2 hold simultaneously. Mechanisms for which 
these latter constraints pertain (simultaneously) are not possible since here 
it can be shown that 

&&-,[A1 WI = 1 
k-&a EYI WI 

whereas on experimental grounds [ 13 it is known that this ratio must be 
significantly smaller than unity. 

2.2. Thermodynamic stability analysis 
The results of the linear stability analysis presented in Section 2.1 can 

be complemented with those obtained in a thermodynamic stability analysis 
of the photogalvanic model, eqns. (1) - (3), which was introduced in ref. 1 
and is studied further in this work. Here the theory of Glansdorff and 
Prigogine [4] will be implemented. In this theory we imagine a system to be 
perturbed from a given steady state, and we consider the second variation of 
the local entropy 6 2S around this steady state. Treating 6 25 as a Liapunoff 
function and using the hypothesis of local equilibrium, it is shown in ref. 4 
thatS2S<Oand 

w2w > o 

at 
(34) 

where the second inequality is a sufficient condition for the asymptotic 
stability of the steady state. If the reverse of inequality (34) is satisfied, this 
is an indication that instability or at least oscillatory decay to a stable steady 
state may occur. 
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Considering the entropy production in a system with fixed boundary 
conditions, it is found that 

; a(as:s) = CSJ,SX, 
Y 

where J. and X, are respectively the flow and driving force characterizing 
the 7th dissipative process inside the system. Consider now an isothermal 
and spatially homogeneous system consisting of a number of chemically 
reacting species distributed in an inert solvent. The flow JY may be identified 
as the reaction rate r7 of the 7th reaction, with the driving force X, of that 
reaction expressed by 

1 
X,=--a 

T ’ 

In this last relation a7 is the chemical affinity for the 7th chemical reaction, 
K, and Qr are the appropriate products of equilibrium uersuS actual chem- 
ical concentrations respectively in the reacting system, R is the universal gas 
constant and 2’ is the (constant) temperature of the system. In these nota- 
tions the formal stability condition (34) may be expressed as 

SF,>0 

In the photogalvanic system considered in this work, we have 

Kl Z CA1 -= 
QI k-01 IYI 

K2 k2 LB1 VI -= 
Q2 k-2[Cl VI 

r2 = k2PlEzl - k--2Wl PI 

K3 k3 PI 2 -- = - 
Q3 k-dAl [Cl 

r3 = k3[B12 - k3 WI [Cl (36~) 

Given the earlier conservation conditions (14) - (lS), we note that 

6 PI =--&[A] --6[C] 

6 [Yl =-S[Z] 

S[Z] =6[A] --6[C] 

(35) 

(36a) 

(36b) 

(37a) 

(37b) 

(37c) 

Using these equations (and recalling that from our earlier discussion I/ [Y] , 
l/WI 4 UCAI, l/PI, l/Ccl in this system), the formal relation (35) can 
be written 
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1 a(62s) 1 1 1 

2R at 
[~lo+ - 

IWO ) +scc][B]o 
WW! + 

( 
1 1 

+5[C] ---- 
Plo Flo )I/ 

6 CA1 (- k2 IPI + 

+ ~z_~[C], (+ 6 [C] (- k2[Z3 - k-2L[Y] 1 + 

X WUC--WBlo - k-dClo)+ 
I 

+ &[C](-22k,[B],-, ---3CAlo) 
I 

(33) 

where for emphasis we have subscripted the steady state concentrations. 
Equation (33) may be simplified to read 

1 w2a = 
2R at 

@CA1 I2 &- @ + ~-ICY] + 2MBlo + k--3CClo) + 

1 
-@ +k-I[Yl +k2Wl 

+ 1Blo 
-k_z[cIo + 4MBlo + 

+ m-3 [Cl 0) + (6 [Cl I2 
I I 

+m +kzCZl + 
0 

+ L2[Y] + 4k3[Blo f 2k-~[Alo) + &(k2[Zl + 
0 

+ k-2[Yl + 2MBlo + k-3Mlo) + 
t 

1 
+@[A]SCCI) -(k-a[Yl + 2WBlo + k-2tAlo) + 

INo 

1 

+ CBlo 
-(2 + 2k_JY] + 2k2[Z] +k_2[Y] --k_2[C]() + 

+ 8k3[BJo + 2k-s[Alo + 2k-3[C]o) + 
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+ +d~l -k-2EClo + 2k3Plo + k-3Wlo) 1 (39) 
0 

We now consider the algebraic structure of the result eqn. (39). First of all, 
the coefficient of the term (6 [C] )2 is strictly positive. In the coefficient of 
the term (6 [A]6 [C] ) th ere are two negative terms; it should be noticed, 
however, that 

L(k-2w ---2[ClO) + 
WI 0 

&(- k-2iClo) 

=+w1 -[Cl0 - PI,)> 0 
0 

so we conclude that the coefficient overall is positive. 
Finally, let us consider the coefficient of the term (6 [A] )2. From the 

steady state condition 

dlC1 
-==2P3l,[Zl -k-,ICloCYl +MJ%,2-~-dAloP%, =O 

dt 

we may write 

k-2LClo - iyl - -&[Bl.[Zl +b[W,2 -k-a[Alo[Clo) 

Thus in the coefficient of the term (6 [A] )2, i.e. in 

&8 + k-,Wl + =,EBlo + k--3[Clo) + 
0 

&Z +k-l[Yl +kz[Zl -k-zlclo +2k3fBlo +k-dclo) 
+ Plo 

we have 

kz[Zl -LdClo +2k,P310 

= k,[Z] - $j(k,[BloIZl + kdBlo2 - k--3[Alo[Clo) + 2k3Plo 

>o 
Moreover, the terms in braces multiplying the variations (6 [A] )2 and 
(6 [C] )2 taken together compensate the terms in the coefficient of the (pos- 
sible negative) factor (6 [A] )(6 [C] ) for 16 [A] I = 16 [C] I = e > 0. Hence, we 
have demonstrated that, for all the photostationary states considered, the 
fundamental inequality 

aGaS) > o 

at 
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is satisfied and hence, from the thermodynamic stability analysis, we con- 
clude that in every possible mechanistic realization the corresponding photo- 
stationary steady state is asymptotically stable. It is important to emphasize 
that, whereas the linear stability analysis was specific to the mechanisms 
(and mechanistic “phase boundaries”) identified, the thermodynamic stabil- 
ity result pertains to the entire mechanistic “phase plane”. 

3. Stability analysis of a photogalvanic cell with diffusion 

In this section we consider explicitly the role of reactant diffusion in 
influencing the stability of the photogalvanic system defined by eqns. (9) - 
(13). A considerable simplification in the,anaIysis is realized if we take ad- 
vantage of the experimental fact that the concentration of metal ions (Y ,Z) 
is considerably larger than the concentration of the organic dye species 
(A,B,C). In effect, we may assume that the metal ion concentration is effec- 
tively constant; then the system of coupled equations to be considered is 

a [Al 
-=DAV2[A] +[A] +k_l[B][Y] +k8[BJ2 -k_s[A][C] (40) 

at 

a PI 
----=DxV’/B] -&?[A] -k_,[B] [Y] -kx[B] [Z] +k-z[C][Y] - 

at 

-2ks[B]” + 2k_&A] [C-J (41) 

a [cl 
- = DcV2[C] + k,[B] [Z] - k_,[C] [Y] + ks[B12 - k-,[A] [C] 

at 

(42) 

The corresponding variational equations are 

a@ IAl) 
at 

= ~‘~(6 [A] ) + J=r,(6 [Bl I+ J’c@ [cl ) 

“B”p!‘= QA(6 [A]) + QB(~ [Bl) + Qc@ [cl) 

a@ ICI) 
at = RA(6 [Al ) + RB@ WI ) + Rc@ [cl) 

where 

PA =-DA’--(Y pB=fi PC =-k_,[A] 

(43) 

(44) 

(45) 

QA =a + k_a[C] QB =-DB’-~~-Y Qc = u + kBB[A] 
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RA =-k_9[C] RB =.y Rc =-DC’-u 

and 

a =H f k_a[C] 

/3 = k_,[Y] + 2k,[B] 

7 = kdzl + 2k3 WI 

u = k_,[Y] + k_,[A] 

If we specify 2 to be a characteristic length of the photogalvanic cell, then a 
solution of the set eqns. (43) - (45) consistent with the boundary conditions 

6 [A] (0,t) = 6 [A] (r,t) = 6 [B] (0,t) = 6 [B] (Z,t) = 6 [C] (O,t) 

= 6 [Cl IW (46) 

(47) 

where 

?lV 
D I- -D- 

l2 

and n is an integer. The temporal eigenvalues 
problem may then be determined by solving 

-DA’-(;II-s P 

(43) 

(here {s} = sl, s2, s3) of the 

- k-,[A1 

Q + k_s[C] -Dg’ --/3-7-s u + k_3[A] = 0 (49) 

- k-a [Cl 7 -DC’-<T-S 

Since it is likely that the diffusion constants DA, Da and DC of the species 
A, B, and C are very nearly the same, we specify here DA = DB = DC; with 
this choice simple manipulations on the resulting determinant show that 

s3 =-D’ (50) 

and the two remaining eigenvalues s1 and s2 satisfy the relations 

S~+sa=20’+~+7+u+Q>O Wa) 

and 
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-(r +k-aCW(~ -k-&l +k+[A] -a) (SW 

When expanded the product s1s2 has two negative terms, i.e. k_ s [Y] k- 9 [C] 
and k,[Z] k_ 8 [A] ; we have already shown in Section 2.1 that these two 
terms vanish, so that here again s1s2 > 0. Analysis of the discriminant 

A = (sl + s~)~ - 4s1s2 (521 

shows that A > 0, from which result we conclude that sr and 82 are real and 
that LQ and s2 are negative. In other words, if it is assumed that the diffusion 
constants of the species A, B and C are all the same, asymptotic stability of 
the system, eqns. (40) - (42), is still ensured. Of course, the actual values of 
the temporal eigenvalues ((Ed, 2, a s s ) will depend on the values assumed for 
the diffusion constant D and on the length parameter 1 which specifies the 
relevant spatial coordinate of the cell. This point will be explored numer- 
ically for the system studied experimentally in ref. 1 in the following section. 
Before turning to the calculations, however, we remark that, if instead of 
imposing the constraint Dn = DB = DC we consider the general case (DA # 
DB # DC), an analysis similar to that just reported leads to the conclusion 
that either (1) all three eigenvalues are negative or (2) there is a single neg- 
ative (purely real) eigenvalue and two eigenvalues which are complex con- 
jugates. Should the latter possibility be realized in a particular photogalvanic 
cell, the system would exhibit oscillations which, in principle, could be ob- 
served by monitoring the photocurrent. We do not explore this interesting 
possibility here since the organic dye molecules (A,B,C) of refs. 1 and 2 are 
so similar; however, it should be possible to design an experimental system 
where the general case (DA # DB # DC) is realized and then to explore 
regimes where oscillations may occur. Such an experimental system is under 
development at the present time in this laboratory. 

4. Application to the iron-thionine system 

In this section we wish to apply the general considerations of the pre- 
ceding two sections to the specific photogalvanic cell studied experimen- 
tally in ref. 2. In particular, our objective is to determine the stability of the 
photostationary state(s) of the iron-thioniue system, first with respect to 
variation in the concentration of the metal ion FeB+ (i.e. Y) and then with 
respect to enhancement in the strength of the irradiance variable 2. We con- 
sider first the wellstirred case and then analyze subsequently the full reac- 
tion-diffusion model. 

For the model introduced in ref. 1, it was shown that six possible 
mechanisms may characterize the reaction of a one-electron redox couple 
with a two-electron redox couple. Rowever, upon examining the experimen- 
tal evidence on the iron-thionine system, it was shown in ref. 2 that four of 
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the six possibilities could be eliminated leaving the two mechanisms Al B2 
Cl and Al B2 Cl. Once again, in the notation of ref. 1, B2 and Cl define 
the constraints 

ka PI > kz WI WI 

k--z[Yl > k-a[Al 

while Al and A2 refer to the inequalities 

k-1 WI > 123 PI 

(Cl) 

(AlI 

k-1 VI < Jz3 PI (A21 

For the present, although we shall assume that the conditions B2 and Cl 
hold, we shall proceed generally in our treatment with respect to the condi- 
tion A (1 or 2). In the limit when the right-hand side of the conditions B2 
and Cl can be neglected (that this simplification is valid for the iron- 
thionine system will be demonstrated explicitly in later paragraphs), the 
steady state concentration of C, here denoted [C] c, is given by 

2k3&k_2[Y] +&+kmz[Y](Z +~-I[Y])~-A~‘~ 
[Cl0 = - 

2k3(k_m2[Y] +&2 
Wa) 

where 

A = (4k3a~(k_2[Y] +z) + ksz[Y](Z + k-1[Y])2}k-2[Y](g” + 

+k-dYl)2 (==I 

From the linear stability analysis presented earlier, we know that the eigen- 
values s1 and s2 are real and negative. For purposes of computation we take 
advantage of the constraints B2 and Cl and the (experimental) fact that 
[YJ + [B] = [Y]. H ence, the general eqns. (24) effectively collapse to the 
following simpler relations: 

Sl + s2 =-(g”+k_l[Y] +4k3[B],, +Iz_~[C]~ +k-,[Y]) (fi4a) 

Sl s2 = g”(2k3 [B] o + k- zCW)+k-1k-2CY12 +2bk-2[BloCYl + 

+k_,k_,[C].[Y] +k-.[C]o(k-I[YI +2k,[Blo +k-3[Alo)--- 

- k- lk--8 [Cl o PI C54b) 

We remark in passing that our thermodynamic stability analysis has also con- 
firmed the stability of the photostationary state. 

It is evident that the actual calculation of the eigenvalues (sl, s2) re- 
quires knowledge of the steady state concentrations of the interacting 
species as well as the estimates of the individual rate constants governing the 
chemical events. We now proceed to identify these factors. We begin by 
noting that the ratio 
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k-12 1 -_rq 
ka k-2 

can be determined from ref. 2, Table 6. It is found that for an acid solution 
(0.05 M H2S04) 

32 z k-121=1.052X 10-a 
J2s k-2 

whereas for a solution in 0.01 M in K2S04 at pH 2.6 it is found that 

k_12 1 
CR%- -= 1.1 x lo-2 

ks k-z 

Since differing values of the individual rate constants appearing in this ratio 
have been reported in the literature, these ratios will be used to check (for 
consistency) the values identified later for k_l, k2 and ka. For example, 
Wiides et al, [ 51 have reported the values 

k-l = 1.2 x lo5 M-l s-1 

ks = 2.8 x 10s M-I s-l 

(I) 
k-s = 6 X lo2 M-l s-I 

k-a = 6 X lo2 M-l s-l 

for kinetics carried out in 50 vol.% aqueous acetonitrile, 0.01 M suhric 
acid and 0.01 M FeSO,; here it is calculated that 

32I = 8.67 x lo-2 

A second goup [6] has reported the values 

k_l = 7.9 X lo4 M-l s-’ 

k3 = 2.4 X 10’ M-l s-l 

w 
k--2 = 2.6 X 10’ M-I s-l 

k+ 4 105M-l s-l 

where these constants were determined for a solution 0.1 N in HaSO4; here 
it is found that 

%I = 1.000 x 10-a 

Finally, Ferreira and Harriman [7] have reported the following data for a 
solution at pH 2.5 : 

k U-2 = (9 + 1) X lo4 M-l s-l _ 

k-1 = 7 X 10’ M-l s-l 
(III) 
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The rate constant k3 which governs the dismutation of semithionine (B) is 
strongly dependent on the polarity of the solution [8 1. We shall assume that 
the value of k8 for a solution at pH 2.5 is sensibly given by the value kS = 
2.4 X IO’ M-l s-l ; using this k3 value and the aforementioned values of k_a 
and k- 1, it is found that 

c)2 III = 22.68 

From these calculations it would appear that the data reported in the paper 
of Hatchard and Parker [6], case (II), are more nearly consistent with the 
rate data presented in ref. 2; this conclusion will be useful later in deciding 
between the rate constants specified in cases (I) and (II). Here, however, we 
simply complete the specification of experimental parameters by noting 
(see ref. 2, eqn. (1)) that 

g=(J fA’ 
[AID @B&I 

so that in our notation 

1 
g =iJ- 

[AIn ‘Bgo 

From ref. 2, for the experiment performed in 0.05 M HzS04, $x = 1, [A] n = 
7.8 pm,go = 0.41 X 1O-3 M s-l and 19 = 0.2 so that g = 10.5 s-l. Finally we 
have 

and 

[Z] = 5 X 1O-4 M 

Using the rate constants listed in case (I) and the experimental param- 
eters noted in the preceding paragraph, it is found that, for [Y] = lo-” M, 
k-zW1 = 0.6 s--l and k-3a = 4.68 X 1O-3 s-l. Thus 

k_2[Y] 3. km3a > km3[Alo 

and the condition Cl is satisfied. From the work of Hardwick [9] it is 
known that the ratio of k_ 2 to k2 is bracketed between the values 

k-2 
450< - < lo4 

kz 

so that, using the value of k_, in case (I), we may conclude that 

1.33 M-l s-l < k2 < 6 X 1O-2 M-l s-l 

and hence that 

6.65 X 1O-4 s-l < k2[Z] < 3 X 1O-6 s-l 
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Even if [B] e is somewhat less than about lOeD M, we find that ka[B] e = 
2.8 X 10-l s-l. Thus 

and the condition B2 is easily satisfied_ Using eqns. (53) and the relationship 
between [C] e, [A] ,, and [B] e it is found that 

[Cl, =6.04X 1O-6 M 

[Al o = 1.64 X lo-” M 

PI 0 = 1.14 X IO-’ M 

From these values, we determine that k-l [Y] = 120 s-l and ks[B] s = 3.19 
s-l from which it follows that 

k--IWI > ksCBlo 

and hence the overall mechanism here wiil be Al B2 Cl. Incidentally, these 
estimates of the steady state concentrations may be compared with those 
calculated from expressions given in refs. 1 and 2. It is assumed in ref. 2 
that the concentration [B] o is so small it may be neglected. Then 

Ic10 + MO = a 
and, for the mechanism Al B2 Cl where it is assumed further [ 2) that 
k_ 1 [Y] % ks [B] , it is found that [A] e satisfies the quadratic equation 

hiif2 IA1 o2 
kw12ke2[Y] 3 

+[Alo=a 

Solution of this quadratic shows that [A] o = 1.34 X lo-’ M and hence that 
[Cl 0 = 6.46 X lo-” M. We shall comment on these estimates in relation to 
those computed earlier in a later paragraph. 

We now use the rate constant data summarized in case (II) and repeat 
the calculations presented in the preceding paragraph. Starting from eqns. 
(53), we calculate 

WI0 = 7.38 X lo+’ M 

WI o = 2.83 X lo-’ M 

[Al 0 = 3.95 X 1O-7 M 

Then we find that k- 1 [Y] = 79 s-l and ks [B] o = 67.9 s-l so that 

k-d?1 > bIBlo 
and hence condition Al is satisfied. Next, using Hardwick’s data the estimate 
for the rate constant k2 can be bracketed between the values 

2.6 X 1O-2 M-l s-l < k2 < 0.577 M-’ s-l 
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so that 

ks[Z] < 2.39 x lo-4 s-l 

Now, k, [ES] ,, = 67.9 s-l so that 

k3P310 s kztzl 
and condition B2 is satisfied. Finally, we determine that k_ 2 [Y] = 0.26 s-l 
and k-3 [A] 0 < 0.040 SK’ (since k--3 < 10’ M-l s-l) and so 

k-,[Yl + k--3iAlo 

Again we find that condition Cl is satisfied. Hence, using the rate constants 
summarized in case (II) we again determine the mechanism to be Al I32 Cl. 
A calculation of the steady state concentrations [C] o and [A] o using expres- 
sions given in refs. 1 and 2 yields the following results: 

[Cl, = 7.58 X lO-6 M 

[Alo = 2.16 X lo-’ M 

As a final calculation to determine which set of rate constraints is most 
consistent with the experimental findings of ref. 2, we consider the rate con- 
stant data summarized in case (III). We estimate that 

WI0 = lo-” M 

PI o = IO-* M 

[Al 0 = 7.8 X lO-6 M 

Here, the rate constant k2 may be bracketed between the values 

9M-l s-l < k2 < 2 X 10’ M-l s-l 

Even with these rather more diverse estimates of steady state concentrations 
and rate constants, we again conclude that the mechanism operative in this 
range of metal ion concentration and irradiance is Al B2 Cl. From the ex- 
pressions in refs. 1 and 2 we may also estimate 

[Alo = 7.8 X lO-6 M 

a number which happens to coincide with our earlier estimate because 
[Cl.= 0 and the effective steady state concentration [B] o is neglected at 
the very outset in the approach taken in ref. 2. 

We are now in a position to decide which set of rate constants leads to 
results in closest correspondence with the experimental findings of ref. 2. 
From ref. 2, Fig. 1, where we have 0 = 0.20, [Y] = lOa M and 
log {f/(1 -n, = - 0.5, then given that [A] n = 7.8 X 10e6 M we calculate 
[Cl 0 = 1.87 X 10B6 M. This calculation allows us to eliminate from further 
consideration the rate data of case (III). The [C] o value estimated from the 
rate data of cases (I) and (II) ( using eqns. (53) and, as well, expressions from 



227 

refs. 1 and 2) is certainly of the same order of magnitude as the value taken 
from the experimental data of ref. 2, although the magnitude of the [C] 0 
value calculated in both cases is off by a factor of about 3 from the experi- 
mental estimate. This is probably to be expected since we neglected in our 
treatment in this work any consideration of diffusion and surface aspects of 
the electrode kinetics. Of the two cases (I) and (II) we settle on the rate 
constant data summarized in case (II) since the value of the ratio% is more 
nearly consistent with that computed directly from the evidence in ref. 2. 
Having now values of the rate constants at our disposal we can calculate the 
eigenvalues s1 and s2 for various concentrations of the metal ion Y, and for 
different values of the irradiance variable 2. This, in tum, will allow us to 
reach definite conclusions regarding the stability of the mechanisms 
Al B2 Cl and A2 B2 Cl as a function of metal ion concentration and 
system illumination. 

We present in Table 1 a summary of our linear stability analysis for the 
iron-thionine system for the well-stirred case. The calculations were per- 
formed using the rate constant data displayed as case (II) (with the value of 
ks specified in case (I)) for five different values of the concentration of the 
metal ion Fe’+ (denoted Y), and three different values of the h-radiance 
variable 8 (or g ). For each of the calculations the conditions Al(A2), Bl(B2) 
and Cl(C2) were checked in order to determine the mechanism operative in 
that regime of ([Y) , g}; the mechanism so determined is listed in the table. 
Before proceeding to an interpretation of the stability analysis it should be 
noted that the mechanism can change from A2 82 Cl to Al B2 Cl either 
with increase in the concentration variable [Y] or with decrease in the ir- 
radiance variable Z. That this changeover in mechanism may occur has been 
noted already in refs. 1 and 2. 

We consider now the eigenvalues listed in Table 1. Although the formal 
analysis presented in Sections 2 and 3 ensures that for every possible mecha- 
nism the two temporal eigenvalues should be negative, the numerical resultx 
reported in Table 1 for an actual experimental system (the iron-thionine 
system) are in themselves quite interesting. For a particular choice ( [Y] , g}, 

each pair of eigenvalues is characterized by the fact that for all cases one 
temporal eigenvalue is larger in magnitude than the other eigenvalue (some- 
times by as much as three orders of magnitude). Now, in considering the 
asymptotic stability of a non-linear system, it is always the eigenvalue closest 
to zero that governs the stability of the system. Given the closeness to zero of 
one temporal eigenvalue in each case, it is interesting to speculate whether 
the explicit consideration of diffusion and/or concentration effects asso- 
ciated with electrode kinetics may result in the cross-over of this eigenvalue 
from a negative to a positive value. Should this occur for certain mechanisms, 
the photogalvanic cell when operated in that regime of experimental con- 
straints would be marginally stable and the overall efficiency of the cell 
would be impaired. This more complex problem will now be considered. 

In their study of the optimum efficiency of photogalvanic cells for 
solar energy conversion, Albery and Archer [lo] give I = 0.1 mm as the cell 
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TABLE 1 

Stability eigenvalues of the iron-thionine photogalvanic cell for various values of metal 
ion concentration (Fe3+ = Y) a n d system illumination for the well-stirred initial con- 
dition 

IYI = 
1O-4 M 

IYI = 
7.2 x 1U-4 M 

IYI = 
7.5 x IO-4 M 

1Yl = 
1O-3 M 

IYI = 
1O-2 M 

2 = 52.5 s-l A2 B2 Cl 
(e = 1.0) -131 

-17.1 

A2 B2 Cl A2 B2 Cl 
-3 26 -333 

-19.1 -19.1 

s= 10.5 s-l A2 B2 Cl 
(e = 0.20) 

-102 
-4.55 

A2 B2 Cl 

-296 
-4.24 

Al B2 Cl 
Al-AA2 B2 Cl 
-303 

-4.23 

g = 3.68 s-l A2 B2 Cl Al B2 Cl Al B2 Cl 
{8 = 0.07) -97.7 -284 -291 

-1.67 -1.57 -1.57 

A2 B2 Cl Al B2 Cl 
-390 -1616 

-18.8 -14.8 

Al B2 Cl Al B2 Cl 

-357 
4.16 

Al B2 Cl Al B2 Cl 
-340 -1079 

-1.56 -2.74 

-1333 
-4.19 

length (or distance between electrodes) in a typical photogalvanic cell. Using 
this value together with D = IO-” cm2 s-l as a “typical” diffusion constant, 
we may calculate the temporal eigenvalues {s} corresponding to the system, 
eqns. (40) - (42). In fact, since it is found [lo] that the efficiency of a 
photogalvanic cell is dependent on a sensitive interplay between the length 
I, the absorbance length, the generating length and the reaction length, it is 
of interest to compute the eigenvalues {s} for different values of the cell 
length 1. Different choices of I change the (reduced) diffusion coefficient 
D: (see eqn. (48)), and in Table 2 we report values of {s] for three different 
choices of D’; these calculations were performed assuming the particular 
mechanism Al B2 Cl and for the rate data summarized as case (II) in the 
preceding discussion. We also specify the (intermediate) metal ion concentra- 
tions, [Y] = 10e3 M ( [Fe3’] ) and [Z] = 5 X 10m4 M ([Fe2’] ), and the sys- 
tem illumination, 2 = 10.5 s-l. The values of {sir s2, s3] so calculated may 
then be compared with the values of {sl, s2} determined for the well-stirred 
system where the latter are included in Table 2 for the mechanism 
Al B2 Cl as well. We comment on these results in the following section. 

5 _ Conclusions 

In the design of photogalvanic cells for solar energy conversion, a 
number of factors are thought to play an important role in influencing the 
efficiency of such devices. The first clear analysis of this problem was pre- 
sented in 1977 by Albery and Archer [ 10 1. In their study these authors 
pointed out that the performance of a photogalvanic device depends on the 
cell photochemistry, the homogeneous kinetics, the mass transport of reac- 
tants and the electrode kinetics. Specifically, they analyzed the variation of 
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TABLE 2 

Stability eigenvalues of the iron-thionine photogalvanic cell taking reac- 
tant diffusion into account 

D’= n2D/Z2 (s-l) 81 (s-l) 82 (a-l) #a 0) 

0.0987 (I - 0.1 X Jla mm) -4.25 -357.0 -0.0987 
0.987 (I = 0.1 mm) -5.14 -358.0 -0.987 
9.07 (I = 0.1/m mm) -14.0 -367.0 -9.87 

Well-stirred case -4.16 -357.0 

[Fe3+] = [Y] = lo’-” M, [Fe2+] = [Z] = 5 X lo-*M and; = 10.5s-‘. 

the power output with the concentrations of the redox couple, with their 
transport and kinetic parameters and with the dimensions of the cell, and 
concluded that although the power conversion efficiency could be as high as 
18% a more realistic estimate would be in the range 5 - 9%. However, many 
authors (see refs. 3 and 4 and references cited therein) have drawn attention 
to the importance of analyzing the stability of coupled non-linear reaction- 
diffusion systems. In studying such non-linear systems, phenomena such as 
“overshoots”, oscillations and even chemical “chaos” are found to occur, 
often in systems which appear to be quite harmless mathematically. Were 
they to occur in a photogalvanic device, such phenomena would certainly 
influence the efficiency of the cell in a significant way. Accordingly, in this 
work we have addressed the problem of stability of photochemical mecha- 
nisms for photogalvanic cells, first for the case where the system is assumed 
to be well stirred and then for the case where reactant diffusion is taken 
into account explicitly. For definiteness we have focused on a chemical 
model introduced recently by Albery et al. [l] which incorporates the 
main features of a common type of photogalvanic cell. These authors con- 
sidered a photoredox system in which a one-electron redox pair (e.g. an 
inorganic couple) reacts with a two-electron redox couple (an organic dye), 
and demonstrated that there are six possible mechanisms by which the 
system can react. For a given set of rate constants, which mechanism is 
found depends on the concentrations of the reacting species and on the sys- 
tem illumination. The principal concern of this work was to assess the &a- 
bility of the photostationary state(s) accessible to the system in each concen- 
tration-irradiance regime. 

Considering first the well-stirred case, the analysis of the six possible 
mechanisms identified in ref. 1 was carried out using a linear stability analy- 
sis as well as the thermodynamic stability analysis. Particular attention was 
paid to those regions of the overall kinetic “phase diagram” where two (or 
more) mechanisms may pertain. In order to facilitate the application of our 
results to specific experimental situations, we have presented explicit ex- 
pressions characterizing the stability for all photochemical schemes described 
by eqns. (1) - (3) consistent with the (experimental) requirement that the 
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concentration of metal ion exceeds the concentration of organic dye. Our 
concern in the preceding section was to demonstrate how such an applica- 
tion could be carried out in a specific case and to indicate the insights that 
follow from the stability analysis. There we considered the iron-thionine 
system, since already in ref. 2 a characterization had been made of the prob- 
able photochemical mechanism in certain regimes of concentration and sys- 
tem illumination. We suggest that the analysis presented in refs. 1 and 2 for 
the iron-thionine system may be complemented by the data summarized in 
Table 1. It should be recalled that the eigenvalues listed in Table 1 for each 
case are both negative (as was forecast by the analyses in Section 2). How- 
ever, by utilizing actual experimental data on the iron-thionine system, it 
was found that one eigenvalue of each pair is close to zero. This raises the 
possibility that a more general analysis, one which would incorporate dif- 
fusion and/or concentration effects associated with electrode kinetics, may 
reveal the cross-over of this eigenvalue to a negative value, thereby sug- 
gesting that operation of the photogalvanic device in that regime of param- 
eter space may result in a photostationary state characterized by marginal 
stability. This possibility was considered in Section 3, and there it was found 
that, provided the diffusion coefficients of A, B and C were the same, 
(asymptotic) stability of the photostationary state was still guaranteed. Only 
if the diffusion coefficients (of A, B and C) were assumed to be different is 
this stability compromised, inasmuch as the onset of oscillations becomes 
possible. We did not explore this possibility in greater detail here since, in 
the experimental system studied in ref. 1, it is most probable that the dif- 
fusion coefficients of thionine (A), the semithionine radical (B) and leuco- 
thionine (C) are essentially the same. As noted in Section 3 we are presently 
investigating an experimental situation where DA* # Dz* # DC’ may be 
realized; the onset of oscillations in this system will be observed by moni- 
toring the photocurrent generated by the photogalvanic cell. For the iron- 
thionine system, however, even though stability is still ensured when dif- 
fusion is incorporated, the calculations reported in’ Section 4 reveal an in- 
teresting dependence on the cell length parameter 2. For a given mechanism 
and for a specific choice of diffusion constant, concentration of metal ion 
and system illumination, the results in Table 2 show that, as regards stability 
properties, the photogalvanic cell behaves essentially like a well-stirred sys- 
tem for the cell length I = 0.1 mm, the value of 1 relevant to the experimental 
studies of refs. 1,2 and 10. Only when Z becomes less than 0.1 mm is a signi- 
ficant shift in the eigenvalues {s 1, s2} to more negative values found. Even if 
this shift in {sI, s2} were to reflect enhanced stability of the overall reaction- 
diffusion system, it may be questioned whether such an enhancement is 
desirable. Albery and Archer [lo] point out that if the cell length becomes 
too small the dark electrode will interfere with the reaction of the semi- 
thionine intermediate B on the illuminated electrode; specifically, some B 
will be lost by reaction with metal ion Fe8+ and, in effect, the cell becomes 
too efficient with respect to removal of B, a most undesirable feature. Thus, 
in the design of photogalvanic devices there seems to be a trade off between 
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optimizing the overall efficiency of the cell and choosing conditions to en- 
sure the stability of the photostationary state. 

Even within the context of the present analysis it is important to stress 
that instabilities may arise because of system illumination effects alone. We 
remind the reader that, although the quantum efficiency for production of 
leucothionine will have its maximum value of unity at low irradiance values 
Cl], Albery et al. point out that low irradiance devices have such low ef- 
ficiencies that such photogalvanic devices cannot be successful; they conclude 
that it is essential to drive the system sufficiently hard so that the A2 B2 Cl 
mechanism is operative. However, increased system illumination has certain 
limitations, both operational (i.e. experimental) and theoretical. With respect 
to the latter qualification, it has been noted by Nitzan et al. [ll] that, if 
the rate constants characterizing the chemical events taking place in the sys- 
tem are characterized by a non-negligible temperature dependence (e.g. are 
of Arrhenius form with E, w RT), then systems subject to high light flux 
conditions may be driven into unstable thermochemical regimes. The idea 
here is that, since the radiant energy incident on the system will at least in 
part be degraded to thermal energy, the accompanying rise in temperature of 
the system will affect the chemistry (through the temperature-dependent 
rate constants) and in certain cases the consequent change in the kinetics 
may affect the ambient temperature. Thus a dynamic situation can be real- 
ized wherein a non-linear feedback mechanism comes into play between the 
photochemical and physical processes in the system. Nitzan et a!. [ll] have 
demonstrated that the absorption of light by some, but not all, species of a 
chemical reaction (even a simple isomerization), followed by a radiationless 
transition and ultimate conversion of light into heat on a time scale short 
compared with the chemical reaction time scale, gives rise to the possibilities 
of multiple steady states, damped oscillations in state variables, hysteresis 
and instabilities. And, in investigating nonequilibrium phenomena in the 
kinetics of photochemical ozone production, Kozak et al. [12] have shown 
that under certain conditions the approach to the steady state may be char- 
acterized by considerable overshoots in the composition variables and the 
temperature. These studies suggest that, if a photogalvanic cell is driven very 
hard, non-linear effects may modulate considerably the evolution to and 
maintenance of a photostationary state. We intend to explore this thermal 
feedback mechanism in a subsequent contribution, as well as the important 
role played by differential electrode kinetics per se in influencing the dynam- 
ic stability of photogalvanic devices. 
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